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Entity Relation Extraction Based on CNN and Attention Mechanism

AnonymousACL submission

Abstract

Distant supervision combined with
neural network model has been widely
used in entity relation extraction.
However, there are often a lot of noisy
data in the labeled dataset obtained by
distant supervision, which seriously
hurts the performance of the extraction
model. In this paper, we propose a
model based on improved sentence-
level attention (IATT) incorporating
with piecewise convolutional neural
networks (PCNN). Our model can
reduce the impact of noisy instances
maximally and make full use of the
semantic information of the positive
instances by combining sentence
feature vectors, which contains
positive instances as much as possible,
and abandons possible noisy sentences.
Experiments show that our model
achieves higher precision on relation
extraction than the baseline methods
without compromising recall rate.

1 Introduction

Entity relation extraction is defined as the task of
extracting binary relations between two entities
from plain texts. Supervised methods are widely
used for this task due to their relatively high
performance, but they often suffer from lacking
of sufficient and accurate labeled dataset. To
alleviate this issue, distant supervision(Mintz et
al., 2009) was proposed to generate labeled data
automatically by aligning relation facts(two
entities with some relation e.g., (Beijing, capital,
China)) in a knowledge base (KB) with sentences
mentioning these relations. However, there are
still some deficiencies in distant supervision.

First, distant supervision inevitably
accompanies with the wrong labeled data, for it
assumes that if two entities have a relation in a
known knowledge base, then all sentences that
mention these two entities will express this
relation in some way. In fact, a sentence that
mentions two entities does not necessarily express
the relation in a knowledge base. For example,
(Apple, founder, Steve Jobs) is a relation fact in
KB, “Steve Jobs had experienced decades of ups
and downs of Apple” is a sentence of plain texts.
Obviously, this sentence does not express the
relation “founder”, but it will be labeled as
“founder”, which leads to wrong labeled data.
Although Riedel et al.(2010) relaxed this
assumption afterwards, there are still a lot of noisy
data in the labeled dataset.
Second, classical distant supervision methods

(Mintz et al., 2009; Riedel et al., 2010; Hoffmann
et al., 2011) have applied supervised models to
capture lexical and syntactic features of the
labeled data obtained through distant supervision.
These features are often derived from existing
Natural Language Processing (NLP) tools, which
inevitably lead to error propagation or
accumulation since the errors exist in NLP tools.
To alleviate this issue, some recent studies have
utilized deep neural networks to extract sentence
features automatically. Zeng et al.(2015) proposed
a model incorporating multi-instance learning
with PCNN, which can build relation extractor
based on distant supervision data. Although the
method achieves significant improvement in
relation extraction, it is still far from reasonable
result. This method assumes that at least one
sentence that mentions the same entity pair will
express their relation in KB, and only selects the
most likely one sentence for each entity pair in
training and prediction. It’s apparent that the
method will lose a large amount of rich
information contained in neglected sentences.
Therefore, Lin et al.(2016) proposed a sentence-
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level attention-based CNN model for distant
supervised relation extraction. The sentence-level
attention can dynamically reduce the weights of
those noisy instances, then extract relation with
the feature vector weighted by sentence-level
attention. Although the method achieves
significant improvement, the noisy instances with
low weight still affect the performance of the
model, and the impact will be more serious as the
noisy instances increase.
In this paper, we propose a model based on

improved sentence-level attention(IATT)
incorporating with PCNN. Our model can reduce
the impact of noisy instances maximally and make
full use of the semantic information of the positive
instances. Experiments show that the precision of
our method has increased by 5% to 11% without
compromising the recall as compared with the
baseline methods.

2 Our approach

Suppose a set S contains n sentences for the same
entity pair (e1, e2), S ={s1, s2, ..., sn}. We introduce
our model in two main parts:

Sentence-Level Feature Extraction. Get the
feature vector representation of each sentence (i.e.,
{v1,v2,...,vn}) via word embedding, convolution
operation and pooling operation of CNN.
Improved Attention Mechanism. Based on

the difference of support degree for relation r of
each sentence feature vector, we utilize the
improved attention mechanism to construct
combined feature vector set {g1, g2, ..., gn}, and
calculate the score of gi (1≤ i≤n) on relation r,
the combined feature vector g with the highest
score is selected, and we believe that g contains
the most positive instance information and the
least noisy information. At last , we use g to train
CNN.As shown in Figure 1.

2.1 Sentence-Level Feature Extraction

We transform a sentence si (si ∈ S) into its
distributed representation by a PCNN. First,
words in the sentence are transformed into low-
dimensional real-valued feature vectors, the vector
representation set {X1,X2,...,Xn} of sentences is
generated. Xi represents the vector of sentence si
(1 ≤ i ≤ n), where semantic information and
location information are considered. After that, the

Figure 2: Improved attention mechanism

Figure 1:Convolution neural network model based on improved attention mechanism
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convolutional layer and piecewise max-pooling
layer are used to construct feature vector set
{v1,v2,...,vn}, as shown in Figure 1. Details can be
referred to Zeng et al.(2015).

2.2 Improved Attention Mechanism

We utilize the improved attention mechanism to
construct combined feature vector which contains
the most positive information and the least noisy
information.
Order Sentence Vectors by Weights. For a

sentence set S ={s1,s2,...,sn}, we can get the feature
vector representation{v1,v2,...,vn} for each
sentence according to section 2.1 and Figure 1.
Since there are differences on the degree of
expressing the relation r in sentence vectors, we
assign weight for each sentence vector according
to its support degree for the relation r (r is relation
fact in KB, which contains the same entity pairs
with the sentence set S). We calculate the weight
β1 as follows:




 n

k
k

i
i

e

e

1
)exp(

)exp(
, 1≤i≤n (1)

where ei is referred as a query-based function
which describes the matching score of the input
sentence feature vector vi and the predicted
relation r. Its calculation method is as follows:

Arve ii  ， 1≤i≤n (2)
where A is a weighted diagonal matrix, and r is
the query vector associated with relation r which
indicates the representation of relation r.
Then we descending order the sentence vector

representations {v1,v2,...,vn} as {v1',v2',...,vn'}
according to the weights calculated by formula (1).
Combine Sentence Feature Vectors and

Select the Best One. As shown in Figure 2, we
combine these ordered feature vectors
{v1',v2',...,vn'} one by one from which has the
highest weight, and the combined sentence feature
vectors {g1,g2,...gn} is generated.





i

j
jji vg

1
 ，1≤i≤n (3)

where αj is the weight of vj', which is calculated as
follows:


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e

e
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)exp(


，1≤j≤i (4)

The parameters in formula (4) have the same
meaning as formula (1). Then we calculate the
conditional probability for each combined feature
vector as follows:





1

1

)exp(

)exp();|( n

k

k
i

r
i

i

o

ogrp 
, 1≤i≤n (5)

where n1 is the total number of relations and ori is
the score associated to relation r, which is defined
as follows:

bfgWo i
r
i  )(0  , 1≤i≤n (6)

where b∈Rn1 is a bias vector , W0∈Rn1×3n is a
weight matrix and f is a vector of Bernoulli
random variables with probability p. The
operation (gi ο f) is called dropout (Srivastava et
al., 2014) which can prevent overfitting.
Finally, we select the best combined sentence

feature vector as follows:
);|(maxarg igrpg  , 1≤j≤n (7)

Then we define the objective function using
cross-entropy at the set level as follows:

),|(log)(
1

 



N

j

i
jj SrpJ (8)

where N is the number of sentence sets and Sij
represents the best combined sentence feature
vector in the j-th sentence set, which is obtained
according to formula (7).

3 Experiments

3.1 Dataset , Evaluation Metrics and
Experimental Settings

We use the dataset developed by (Riedel et al.,
2010), which was generated by aligning Freebase
relations with the New York Times (NYT) corpus.
Similar to previous work (Mintz et al., 2009), we
evaluate our model in the held-out evaluation and
report the precision/recall curves in our
experiments.
In this paper, we use the word2vec tool to train

the word embeddings on the NYT corpus.
All the parameters we used in the experiments

are as follows:

Window
size

w=3 Feature
maps

n=230

Word
dimension

dw=50 Position
dimension

dp=5

Batch size B=160 Adadelta
parameter

ρ=0.95,ε=1
e-6

Dropout
probability

p=0.5 Learning
rate

λ=0.01

Table 1: Parameters used in our experiments
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3.2 Experimental Result

Figure 3 is the comparison of our method with
other neural extraction methods. We have the
following observation from Figure 3: (1) the
PCNN+ONE method (Zeng et al., 2015) brings
better performance as compared to PCNN+AVE
(Lin et al., 2016, Lin mentioned it but did not
recommend it). The reason is that the
PCNN+AVE method treats each sentence in the
set S equally, which leads to obtain richer
semantic information as well as noisy information.
Obviously, the damages of noisy information are
far more serious than the advantage of rich
semantic information. The experiment indicates
that the proportion of noisy data in the dataset
obtained by distant supervision is very large. (2)
PCNN+ATT method (Lin et al., 2016) brings
better performance as compared to PCNN+AVE
method and PCNN+ONE method, which
indicates that the sentence-level attention is useful
for reducing the influence of noisy data by setting
weights for sentences. (3)The PCNN+IATT
method brings better performance as compared to
PCNN+ATT method, which indicates that the
improved attention mechanism can take full use of
the positive instances and abandon the noisy
instances efficiently. (4)The PCNN+IATT method
achieves the highest precision over the entire
range of recall compared to other methods, which
indicates that the proposed improved attention
mechanism is beneficial. This mechanism can
take full use of the semantic information and
effectively filter out noisy sentences, which
alleviates the wrong labeled problem greatly in
distant supervision relation extraction.

Fig.4 is the comparison of our method with
traditional methods. From Fig.4 we can observe
that: PCNN+IATT model significantly
outperforms the main traditional methods (Mintz
et al., 2009; Surdeanu et al., 2012) over the entire
range of recall. It demonstrates that the human-
designed feature cannot precisely express the
semantic meaning of the sentences, and the
inevitable error brought by NLP tools will degrade
the performance of relation extraction. In contrast,
PCNN+IATT which learns the representation of
each sentences automatically can express each
sentence well and can filter out noisy sentences
effectively.

4 Conclusions

In this paper, we propose a model based on
improved sentence-level attention (IATT)
incorporating with PCNN. Our model can reduce
the impact of noisy instances maximally and make
full use of the semantic information of all the
positive instances. The experimental results show
that our model achieves significant and consistent
improvements in relation extraction as compared
with the state-of-the-art methods.
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